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Experiment Configuration

Motivation

Backprompt Architecture

Results and Analysis

1. Given some feedback, how sensitive are GPT-
4's new generations to it? Is it oversensitive to 
incorrect feedback?

2. Are GPT's verification abilities any better than its 
solution capabilities in this domain? When they fail, 
what kinds of mistakes do they make?
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Critique Doesn’t Matter, Verification Does

More Samples Are All You Need
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Examining Verification

• Much recent work has focused on improving 
performance by augmenting LLMs with additional 
tools and feedback as parts of larger systems.

• We build on this with two goals:
1. to challenge claims about reasoning 

performance, especially when self-critiquing.
2. to move towards simplifying LLM-modulo 

architectures while maintaining improvements.
• Verification is typically easier than generation. We 

question whether this is true for LLMs.

Mistakes In Verification
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Domain: Graph Coloring

• Given a planar graph, the problem of finding a 
minimal vertex labeling where no edge connects 
vertices with the same label is a canonical 
reasoning problem.

• Solutions are hard to generate, but critiquing is 
intuitively trivial: just list the violated constraints.

As we are interested in simplification, we keep the 
overall architecture deliberately basic and 
carefully analyze which aspects were important.
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Performance Over Backprompting Schemes

15 Rounds of Critique
(Sound Verifier)

n=15 Completions

Avg. No. Prompts ~11.9 15
Avg. Token Cost ~17828 ~5207
Avg. % Correct 37% 40%

26%

41%

27%

Over Various Colorings

No Hallucinations

94% 98% 94%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

First Error Sound Critique All Errors Sound Critique One Error False Critique

% Edges Mentioned in Critique that were Changed

That is to say, the same results can be achieved without giving 
any critique, just asking for fifteen completions to an unchanged 

query and evaluating them—a substantially lower token cost.


